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Abstract The goal of systems biology is to define all of the
elements present in a given system and to create an interac-
tion network between these components so that the behav-
ior of the system, as a whole and in parts, can be explained
under specified conditions. The elements constituting the
network that influences the development of atherosclerosis
could be genes, pathways, transcript levels, proteins, or
physiologic traits.  In this review, we discuss how the inte-
gration of genetics and technologies such as transcriptomics
and proteomics, combined with mathematical modeling,
may lead to an understanding of such networks.
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Atherosclerosis involves a large genetic network, not a
simple linear pathway. This network extends to interactions
with the many known risk factors for the disease and in-
volves many cell types and organ systems (

 

Fig. 1

 

). The con-
nectedness of the various risk factors results in their cluster-
ing in populations, and these clusters have been given
designations such as “the metabolic syndrome” and “the
atherogenic lipoprotein phenotype.” Experimentally, the
network is commonly studied by perturbing a single ele-
ment, as in knockout mice, in a single genetic background.
Although this approach provides valuable information that
is simple to interpret, it may not identify the key regulators.
Knockout experiments, for example, are dependent on
prior biological information about the candidate gene, and
they are not an efficient screen for the many epistatic and
pleiotropic interactions that are likely to be involved. Ap-

 

proaches involving multiple perturbations, as in crosses be-
tween two genetically distinct strains of mice, may provide
greater power to elucidate relevant pathways.

In this review, we discuss progress toward unraveling
the complex network that influences atherosclerosis. First,
we discuss various approaches that have provided much of
our present knowledge of the pathways in atherosclerosis.
These include genetic studies in humans and in animal
models, including transgenic studies. Second, we discuss
the use of genomic and proteomic technologies, as well as
nonclassical statistics, to identify genes and pathways con-
tributing to atherosclerosis. The combination of genetics
and gene expression promises to be a particularly power-
ful approach in the identification of the interactions un-
derlying complex traits. Third, we discuss the general
properties of biological networks and some early results
related to networks for atherosclerosis.

HUMAN STUDIES

Studies of a number of Mendelian traits have formed
the basis for much of our understanding of the pathways
contributing to atherosclerosis. Familial hypercholesterol-
emia taught us about the importance of cholesterol, ho-
mocystinuria led us to the importance of small variations
in plasma homocysteine levels, and various Mendelian
blood pressure disorders showed us the importance of salt
balance in blood pressure. Interestingly, few of the genes
identified in these studies appear to contribute impor-
tantly to the common forms of atherosclerosis (1).

Genetic contributions to common, complex forms of
atherosclerosis (and of traits such as lipid metabolism that
are relevant to the disease) were first studied by popula-
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tion association with candidate genes based on our bio-
chemical knowledge. One of the first important examples
of this was apolipoprotein E (apoE), which was found to
exhibit three common alleles in all populations studied
(E2, E3, and E4). The E2 form was found to be strongly as-
sociated with a relatively uncommon dyslipidemia (type
III) and with low cholesterol levels in the population, and
the E4 allele was associated with increased cholesterol lev-
els. Since the early 1980s, thousands of association studies
with candidate genes have been performed for traits rele-
vant to atherosclerosis. Of these, approximately a dozen
have shown rather consistent findings [e.g., hepatic lipase
with HDL levels and peroxisome proliferator-activated re-
ceptor 

 

�

 

 (PPAR

 

�

 

) with type 2 diabetes], but most remain
questionable, including many that have been studied in
multiple, relatively large populations (2).

Since the mid 1990s, a common paradigm in human
studies of complex traits has been to carry out linkage
analysis in families to identify the regions of the genome
harboring the most significant common genetic factors,
followed by either linkage disequilibrium analysis of the
region to pinpoint the underlying gene or the testing of
“positional candidates” at that locus. The first successful
example of this was the identification of calpain 10 in type
2 diabetes in a large set of Mexican-American families (3).
Other similar studies have now identified several other
loci and genes relevant to atherosclerosis (2). Linkage
analysis has very limited power for complex traits and thus
will reveal only the strongest and most common variations
in the populations being studied (4). With the advent of
cheaper methods for the detection of polymorphisms, ge-
nome-wide association studies are becoming feasible. For
example, Ozaki et al. (5) carried out a study of single nu-
cleotide polymorphisms in thousands of individuals in Ja-
pan who had been studied for coronary heart disease and
identified several genes exhibiting strong evidence of as-
sociation. These were then studied in a second set of fami-
lies, and one gene, lymphotoxin-

 

�

 

, was found to be highly

significant in the second set of individuals as well. A de-
tailed map of common polymorphism haplotypes (HapMap)
of the genome with a single nucleotide polymorphism (SNP)
every kilobase or so should be completed by 2005, and this
should greatly aid in the implementation of whole-genome
association studies (www.hapmap.org).

Why have efforts to identify genes for the common forms
of atherosclerosis been largely unsuccessful? One reason, of
course, is that genes for the common forms have mostly
modest effects that are difficult to detect in the background
of many genetic and environmental perturbations. Another
important reason is likely related to epistatic interactions.
Thus, the effects of certain variations may influence pheno-
types only in particular genetic backgrounds. This may ex-
plain why human studies frequently fail to replicate other
human studies (different populations) or animal findings
(different genetic context) (6). It seems unlikely that the
goal of understanding in detail the genetic network in-
volved in atherogenesis can be achieved in the foreseeable
future by direct studies of human populations. Given the ex-
tensive conservation of gene structure and function among
mammals (mice and humans differ by 

 

�

 

300 genes), the
overall features of this network are likely to be similar be-
tween humans and other mammals. Therefore, the most
useful approach will be to work out details of the network in
animal models and then examine the corresponding fea-
tures in human populations. It will be particularly important
to define gene-gene and gene-environment interactions in
animal models, because these will be the most challenging
aspects of the problem.

Because atherosclerosis involves many cell types and im-
portant systemic influences, tissue culture studies will re-
veal only a subset of the important interactions. Neverthe-
less, such studies will importantly complement in vivo
studies (7). In particular, expression array analyses of cells
in response to genetic, nutritional, or pharmacologic per-
turbations should help in the formulation or validation of
network models. For example, Johnson et al. (8) studied
gene expression profiles of vascular smooth muscle cells
in response to a polycyclic aromatic hydrocarbon present
in tobacco smoke. Studies of cells obtained from individu-
als with various Mendelian or complex disorders may also
be informative when subjected to genomic, proteomic, or
metabolomic analyses.

KNOCKOUTS AND OTHER SINGLE 
GENE MUTATIONS

Most of the atherosclerosis research community is fo-
cused on the use of single perturbations, primarily involv-
ing knockout or transgenic mice, in a single genetic back-
ground, usually strain C57BL/6J carrying a sensitizing
mutation, such as a null mutation of apoE or the LDL re-
ceptor. Although this approach has taught us a great deal,
we argue that other, genome-wide approaches will in some
cases be more efficient for the identification of key inter-
actions. As discussed above, a knockout perturbs just one
branch of the very large genetic network contributing to

Fig. 1. A cartoon illustrating the concept of a genetic network for
atherosclerosis and some of its risk factors. As discussed in the text,
the actual network is undoubtedly much larger than this.
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atherosclerosis, and the effect is dependent upon the par-
ticular genetic background employed. Because the net-
work has so many connections, the fact that a knockout in-
fluences the development of lesions may be attributable
to indirect effects. Also, a knockout is “unphysiological,”
and a positive result does not necessarily indicate a regula-
tory or modifier function of that gene in atherosclerosis.
The knockout may also have a different effect in a dif-
ferent genetic background. For example, bone marrow
transplantation of C57BL/6J mice with apoE null bone
marrow cells enhances atherogenesis, whereas transplan-
tation of C3H/HeJ mice with apoE null bone marrow re-
duces atherosclerosis, indicating that apoE is protective in
one genetic context and proatherogenic in another (9).
The failure to observe an effect of a knockout also does
not necessarily exclude that gene from playing an impor-
tant role in the network. For example, a gene may have
both positive and negative effects (as with apoE above)
and, in some genetic backgrounds, the effects may cancel
each other. Or the knocked out gene could be part of an
interconnected robust network that will adopt a new ar-
chitecture and make the proper adjustments to amelio-
rate the effect of the perturbation and preserve the nor-
mal phenotype; in this instance, it may be necessary to
simultaneously perturb two or more genes to observe an
effect. A third explanation for the lack of phenotype
could be that the conditions under which the gene of in-
terest plays a role have not been tested yet.

At present, investigators primarily use transgenic ap-
proaches to study candidate genes, but with the comple-
tion of the genome sequences of human and various
model organisms, including rat and mouse, an important
future goal will be to define the functions of all 35,000 or
so mammalian genes. For this, classic gene-specific ap-
proaches will be too laborious and time-consuming, and
gene-trap mutagenesis or RNA interference (RNAi) ap-
proaches will be used instead. Already, several large gene-
trap libraries of embryonic stem cells have been produced
(10). Another approach for identifying genes relevant to spe-
cific processes involves the use of spontaneous or chemi-
cally induced mutations. Spontaneous mutations in mice,
for example, have proven very useful for examining as-
pects of lipid metabolism (11). Several large-scale chemi-
cal mutagenesis screens of mice are being performed at
present in the public and private sectors using ethyl nitro-
sourea, an alkylating agent that introduces point muta-
tions at a high frequency (12).

Transgenic animals are usually characterized only with
respect to a few phenotypes, such as the amount of ath-
erosclerosis, the complexity of the lesions, the levels of
plasma lipids, or the expression of selected candidate genes.
Such results provide only a small fraction of the potential
information that can be extracted with respect to networks.
For example, genome-wide microarray analyses could be
performed on a variety of tissues to provide a picture of
the components of the transcriptional network that are
perturbed. Such data could help in the formulation and
validation of network models. For such studies, it may be
preferable to examine animals in which the expression of

a gene is altered but not totally ablated, because the lat-
ter condition may result in many nonphysiological alter-
ations. Parallel studies in tissue culture cells can be used
to complement or guide the animal studies (13).

DISSECTION OF COMPLEX TRAITS 
IN ANIMAL MODELS

Whereas environmental and genetic backgrounds differ
from individual to individual in human populations, these
can be strictly controlled in studies with experimental ani-
mal models. Moreover, with animal models, it is possible
to set up large, informative genetic crosses for purposes of
mapping genes that contribute to complex traits. Mice
and rats are by far the most useful mammals for genetic
studies, with a great body of physiological, developmental,
and genetic knowledge on which to build (14, 15).

Among inbred strains of mice and rats are variations rele-
vant to most aspects of atherogenesis: plasma lipoprotein
levels, blood pressure, diabetes, obesity, inflammation, ath-
erosclerotic lesion development, lesion composition, lesion
calcification, lesion-related medial destruction, and dietary
responsiveness. Some of these variations are observed only
in sensitized genetic backgrounds, such as hypercholesterol-
emia induced by null mutations for apoE or the LDL recep-
tor. Recent studies have shown that hypercholesterolemic
mice also show evidence of lesion rupture, although the oc-
clusive thrombosis that is an important feature of the clinical
disease has not been observed. These genetic variations tend
to be very complex in rodents as well as in humans (16).

The genetic loci responsible for these variations can
be mapped by linkage analysis [quantitative trait locus
(QTL) mapping] in crosses between different strains (see,
for example, 

 

Fig. 2

 

). A recent review from the Complex
Trait Consortium provides a clear and concise overview of
QTL mapping (17). Generally, a hundred or more back-
cross or intercross progeny are generated and typed for
the traits of interest and for genetic markers spaced at in-
tervals along the genome. A variety of programs are avail-
able to perform linkage analysis, with features that permit
interval mapping (testing for linkage between markers),
calculation of statistical evidence of linkage, and analysis
of epistasis and other interactions between loci. Such stud-
ies have shown that most of the traits relevant to athero-
sclerosis are highly complex and frequently exhibit epista-
sis. In crosses between a handful of strains, dozens of loci
for plasma lipoprotein levels, body fat, and lesion size
have been mapped [reviewed in ref. (16)].

QTL analysis is only capable of mapping a gene to a
very large region (usually 50 Mb or more). If the resulting
region does not contain any strong positional candidate
genes, or if it contains many such genes, fine mapping
must be performed. The most commonly used fine map-
ping strategy involves the isolation of individual QTLs in
common genetic backgrounds (congenic strains) to re-
move other loci influencing the trait. This can be thought
of as “Mendelizing” a complex trait. The congenic region
can then be subdivided by further genetic crosses.
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In cases in which the effect of a QTL is very modest or
the coefficient of variation of the trait is very large (as in
the size of atherosclerotic lesions), progeny testing or the
construction of subcongenic lines is required for fine
mapping (18). The goal of fine mapping is to reduce the
size of the critical region to 

 

�

 

1 or 2 Mb so that a relatively
small number of candidate genes remain.

The construction of congenic strains is expensive and
time-consuming, even when using a “rapid congenic” ap-
proach. Several whole-genome congenic libraries have
now been constructed, allowing this step to be bypassed if
the QTL alleles differ between the appropriate strains
(19–21). Recently, Singer et al. (21) surveyed one set
of “chromosome substitution strains” (congenic strains in
which entire chromosomes are substituted) between strains
A and C57BL/6 for several traits relevant to atherosclero-
sis, including plasma levels of cholesterol, campesterol,
and sitosterol, weight gain in response to two different di-
ets, and plasma levels of various metabolites. Altogether,
in a survey of 53 traits, they identified 

 

�

 

150 different loci.
These included loci for cholesterol on 8 different chro-
mosomes, loci for sitosterol on 14 chromosomes, and loci
for weight gain on 17 chromosomes. The authors suggest
that direct surveys of such congenic strains provides a more
sensitive way of locating QTLs compared with genetic crosses,
because the latter exhibit “phenotypic noise” resulting from
the simultaneous segregation of multiple QTLs (21).

It has been suggested that in silico SNP haplotype analy-
sis (analysis of haplotypes that are available in databases)
across inbred strains of mice might be a useful strategy for
mapping complex traits (22). Although the approach is
probably of limited utility for highly complex traits (23, 24),
it can be very useful in conjunction with analysis of QTLs in
multiple crosses to identify which strains are likely to share
a common allele (25). Extensive SNP databases for a num-
ber of strains are now available and are rapidly expanding.

The identity of the gene underlying a QTL is normally
confirmed by examining the effects of a knockout or a
transgene on the phenotype. For this, one would normally
first search the literature for previously engineered mice,

including gene-trap libraries. If none can be identified, it
may be possible to examine aspects of the phenotype in
cultured cells. We have also used bacterial artificial chro-
mosomes harboring candidate genes for the construction
of transgenic mice, reasoning that for most quantitative
traits, a 1- or 2-fold perturbation in the level of expression
of a gene will influence the final phenotype (although this
will not always be the case). The strongest evidence, of
course, would be to replace one allele for another using a
“knock-in” strategy, although this should not be required
as “proof” of the identity of the underlying gene.

Although QTL mapping has great power to detect link-
age, the identification of genes underlying the QTL has
proven to be very difficult. For example, more than 20 dif-
ferent loci for atherosclerotic lesions have been identified
in mice, but of these, only 2 genes, both positional candi-
dates, have been confirmed using transgenic approaches
(16). The recent completion of the sequencing of the
mouse and rat genomes will considerably aid in the har-
vest of genes, but the identification of novel genes will still
be limited by recombination intervals.

Williams, Haines, and Moore (6) recently proposed the
construction of a very large (

 

�

 

1,000) set of recombinant in-
bred (RI) strains to provide a tool for rapid fine mapping
of QTLs. RI strains are produced by crossing two or more
inbred strains and then inbreeding the progeny to geneti-
cally fix particular combinations of alleles from the paren-
tal strains. The RI strains would be derived from eight
highly diverse inbred strains to incorporate a great deal of
naturally occurring variation and would be genotyped at a
very high density, allowing resolution of 

 

�

 

100,000 unique
recombination breakpoints with an average spacing of 

 

�

 

25
kb (26). Envisioned as a “collaborative cross” that would be
used and maintained by multiple scientists and institutions,
the RI set would be used for QTL analysis in three stages.
First, a subset of RI strains would be studied to roughly map
the QTL. Second, 100–200 strains with breakpoints in the
interval of interest would be examined for the phenotype.
Third, all mice with relevant breakpoints (including other
QTLs for the trait) would be studied.

Fig. 2. Use of genetics of gene expression data to priori-
tize candidate genes underlying a locus of interest. A quan-
titative trait locus (QTL) for HDL cholesterol levels (HDL-
chol) was previously described in a cross between strains
DBA/2J and C57BL/6J on chromosome (Chr.) 3 at 22 cen-
timorgan (cM) at the peak marker D3mit241 (44). Expres-
sion array analyses of livers from the mice in this cross were
performed and used to predict cis-acting expression QTL
(eQTL) (43). The cis-acting eQTLs that mapped to within
12 Mb of that marker were identified. This resulted in a pri-
oritized candidate gene list of three genes (NM_019410,
AK018125, and a previously uncharacterized gene,
5430417P09Rik). D3mit241, NM_019410, AK018125, and
5430417P09Rik are located at 68.06, 59.23, 69.04, and
69.05 mB, respectively. A LOD score is a statistical measure
of the significance of linkage. In an F2 intercross in mice, a
LOD score of 4.3 is considered significant.
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GENOMICS, TRANSCRIPTOMICS, PROTEOMICS, 
AND METABOLOMICS

During the past decade, whole-genome microarrays
have been widely used to survey differences in gene ex-
pression between tissues, between normal and disease
states, and between different environmental conditions
(27). Hierarchical clustering of such data allows genes to
be grouped into classes of potential functional signifi-
cance (28), and groups of genes can be tested for predic-
tive value for disease (as in the assessment of the stage of a
cancer). Also, high-throughput gene expression micro-
array analysis can be used to facilitate gene identifica-
tion when combined with mapping information. This ap-
proach has now been applied to help identify genes for
several QTLs. For example, Aitman and colleagues (29)
used cDNA microarrays containing 10,000 randomly col-
lected cDNA clones from a rat cDNA library to compare
gene expression levels between the epididymal fat of the
spontaneously hypertensive rat (SHR) and a congenic
strain containing a locus for insulin resistance derived
from the Brown Norway rat in the SHR background. Out
of 13 clones exhibiting reduced hybridization from SHR
fat, three belonged to the CD36 gene, which resided
within the congenic interval. Transgenic overexpression
of the CD36 gene in the SHR strain ameliorated insulin
resistance and decreased plasma free fatty acid levels, con-
firming that CD36 was causal in the trait. Similarly, expres-
sion array analyses helped to identify genes underlying
QTLs for asthma (30) and bone mass (31).

In the case of complex disorders, differences in gene
expression may be subtle and thus difficult to detect, and
human studies are likely to be complicated by genetic het-
erogeneity. For example, attempts to identify significant
differences in the expression profiles of muscle from type
II diabetics compared with normal volunteers have failed
to reveal differences in individual genes. Mootha et al.
(32) used an ingenious approach to the problem: rather
than test for differences in the expression of individual
genes, they tested for overall differences in expression
patterns of various sets of genes in annotated pathways.
In this study, they used 149 metabolic pathways and
groups of functionally (or spatially) related genes and
computed a score for each pathway/group based on the
combined differential expression measure of the genes in
each group. The score each pathway received was propor-
tional to the number of genes enriched in the microarray
profiling data. Pathways were then ranked based on the
score they received, and the statistical significance of the
score of top-ranking pathways was determined using a per-
mutation test. The analysis revealed that groups of genes
involved in oxidative phosphorylation and mitochondrial
functions ranked highest, although the overall changes in
gene expression in diabetics compared with controls were
relatively modest (32). One of the genes downregulated
in diabetic patients was PGC-1

 

�

 

, a primary regulator of
metabolism. Overexpression of PGC-1

 

�

 

 in a mouse skeletal
muscle cell line resulted in increased expression of many of
the oxidative phosphorylation genes in the identified path-

ways. Although this study did not result in the identification
of the causal genes in type II diabetes, it did suggest that
they act by perturbing oxidative phosphorylation. As dis-
cussed below, expression array analysis in combination with
genetic or environmental perturbations provides a power-
ful approach not only for the identification of candidate
genes underlying complex traits but also for the elucida-
tion of causal interactions between genes and traits.

Gene expression, of course, will not capture many im-
portant interactions within a cell. Thus, the correlation
between transcript levels and protein levels is poor for
many proteins, and the activities of many proteins are fur-
ther regulated by modifications such as phosphorylation
or proteolysis. Moreover, structural variations such as mis-
sense mutations or alternative splicing are unlikely to
be detected by standard expression arrays. Large-scale
analysis of proteins has the potential to provide a more
comprehensive understanding of complex biological pro-
cesses, but methods for comprehensive screening for dif-
ferences in protein levels or structures have not yet been
developed. Two-dimensional polyacrylamide gel electro-
phoresis (2D PAGE) has very limited sensitivity (usually

 

�

 

1,000 proteins). Nevertheless, several studies have used
2D PAGE to identify numerous differences in protein lev-
els that occur during atherogenesis. An extension of 2D
PAGE is differential in-gel electrophoresis, in which two
pools of proteins are labeled with different fluorescent
dyes, allowing detection of quantitative differences be-
tween the pools (33, 34). Mass spectrophotometric meth-
ods have great sensitivity but are difficult to apply on a ge-
nome-wide level. Protein microarrays have been designed
to capture various features of functional proteomics, in-
cluding protein levels, protein-protein interactions, and
activity. These arrays are essentially high-throughput ver-
sions of enzyme-linked immunosorbent assays, in which
characterized peptides or antibodies are immobilized on
the surface of a chip and subsequently probed with the
sample of interest.

A number of different applications have been devel-
oped to characterize protein-protein interactions, includ-
ing the yeast two-hybrid system, a genetic assay in which
binding is detected upon induction of reporter genes (35,
36). To facilitate the characterization of post-translational
modifications, such as phosphorylation, several mass spec-
trophotometry-based techniques, including multi-dimen-
sional protein identification technology, isotope-coded
affinity tagging, and Fourier transform ion cyclotron reso-
nance, have the capability to detect protein alterations. In
the section on Biological Networks below, we discuss the
results of genome-wide yeast two-hybrid analysis that has
provided a comprehensive network of protein-protein in-
teractions in several organisms.

Like the other “omic” technologies, metabolomics seeks
to identify all gene products (transcripts, proteins, or me-
tabolites) present in biological samples and to elucidate
the quantitative dynamics of these products. The principal
tools for metabolomics are gas-liquid chromatography
coupled with mass spectrometry. Most progress in the me-
tabolomics field has involved plant biology, but there are

 by guest, on June 14, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 
0.DC1.html 
http://www.jlr.org/content/suppl/2004/08/31/R400006-JLR20
Supplemental Material can be found at:

http://www.jlr.org/


 

1798 Journal of Lipid Research

 

Volume 45, 2004

 

now a number of reports relevant to atherosclerosis and
diabetes. For example, Watkins et al. (37) carried out a
comprehensive metabolic assessment of lipid metabolites
to identify the specific effects of the PPAR

 

�

 

 agonist rosigli-
tazone in a mouse model of type 2 diabetes. The authors
demonstrated a large number of tissue-specific metabolic
effects and proposed that metabolomics has excellent po-
tential for the clinical assessment of responses to drug
therapy (37). Metabolomics will be most powerful when
coupled with other functional genomics approaches.

COMBINING GENETICS AND GENE EXPRESSION

Transcript levels can be used as genetic traits in the same
way as phenotypes, such as cholesterol levels (38, 39). The
genetic loci controlling the levels of a transcript can thus be
mapped by QTL analysis, and the loci thus identified have
been termed expression QTL (eQTL). If the transcript
level is controlled by structural variation of a gene that in-
fluences its rate of transcription or the maturation or stabil-
ity of the transcript, the eQTL would be expected to map
directly over the gene in question. Such an eQTL is termed
a 

 

cis

 

-acting eQTL. If, on the other hand, the levels of a tran-
script are determined by a genetic variation in a second
gene (e.g., a variation in a transcriptional regulator of the
first gene), the eQTL would map to the position of the reg-
ulator gene rather than to the gene whose transcript levels
segregated in the cross. Such an eQTL would be termed a

 

trans

 

-acting eQTL. The approach of examining the segrega-
tion of transcript levels in a genetic cross should be distin-
guished from a study in which transcript levels are simply
compared between two different strains. In the latter study,
differences in transcript levels can be identified, but it is
not possible to determine from such data whether any of
the differences observed are the result of 

 

cis

 

-acting genetic
differences or 

 

trans

 

-acting differences.
An example of this approach was the analysis of HDL lev-

els in a cross between two strains differing in the response of
HDL to an atherogenic diet. C3H mice maintain high levels
of HDL on a high-fat diet, whereas strain C57BL/6 mice
show a reduction in response to the diet. To test for the po-
tential involvement of bile acid metabolism in this trait,
Machleder et al. (40) quantified mRNA levels of cholesterol-
7

 

�

 

-hydroxylase (CYP7A) as well as HDL levels in the cross.
They observed three loci that segregated for HDL levels,
and at each locus they also observed QTLs for the mRNA
levels of CYP7A. Because the structural gene for CYP7A was
located outside of any of these regions, it was clear that it
was regulated in 

 

trans

 

 by several unlinked genes. The obser-
vation that the CYP7A transcript levels segregated with HDL
suggested that it was involved in the HDL trait.

More recently, microarrays have been used to assess ge-
nome-wide transcriptional activity in segregating popula-
tions, offering a powerful tool to dissect causal relationships
between genes and traits. As discussed by Jansen and Nap
(38, 39), the analysis of gene expression in segregating pop-
ulations with multiple genetic perturbations can potentially
reveal much information about gene-gene and gene-clinical

trait interactions. This approach was first applied to yeast, in
which genome-wide analyses of transcript levels in a cross
between two divergent strains revealed a large number of
loci of both the 

 

cis

 

-acting and 

 

trans

 

-acting variety (41). Sub-
sequently, two studies were performed in mice involving
crosses of strains differing in diabetes-related traits (42, 43).

Lan et al. (42) studied the levels of expression of a num-
ber of candidate genes for insulin resistance and lipid me-
tabolism segregating in a mouse cross. Using principal
components analysis, they were able to identify groups of
transcripts whose levels were explained by principal com-
ponents (

 

Fig. 3

 

). Such principal components likely corre-
spond to 

 

trans

 

-acting factors influencing a set of genes.
Schadt et al. (43) used whole-genome expression arrays

to examine transcript levels in livers in a cross between
strains DBA/2 and C57BL/6. One surprising finding was
the large number of genes whose transcript levels segre-
gated in the cross. More than one-third of the transcripts
exhibited evidence of segregation, as judged by hierarchi-
cal clustering and the fact that the transcript levels exhib-
ited significant QTLs at one or more locations in the
genome. The question of false positives with so many com-
parisons is obviously very important in such studies. The
fact that 

 

cis

 

-acting transcript QTLs happen to map over
the corresponding gene suggests strongly that most of
these are unlikely to be false positives, but the false-posi-
tive rate for 

 

trans

 

-acting loci is unclear. A high fraction of
false positives would likely complicate the use of the data
in attempting to construct gene networks. In addition to
mice, Schadt and colleagues also carried out combined
expression array analyses on crosses between strains of
maize and on cultured cells from several human pedi-
grees. The human studies did not yield data of sufficient
quality to permit QTL analysis, but the maize data yielded
results comparable to the yeast and mouse results.

One benefit of a “genetics of gene expression” approach
is that it provides candidate genes for QTL studies. Figure 2
illustrates the use of 

 

cis

 

 eQTL underlying a phenotypic
QTL to prioritize candidate genes. In this example, a QTL
for plasma HDL levels was identified in a cross between
DBA/2 and C57BL/6 (44). This region encompasses more
than 69 genes in 12 Mb, but of these genes only 3 exhibited
significant 

 

cis

 

-acting eQTLs (Fig. 2). A genetics of gene ex-
pression approach can also be used to subclassify animals in
a cross based on their expression profiles, similar to the use
of microarrays for the classification of cancers. For exam-
ple, Schadt et al. (43) identified genes that best distin-
guished thin from fat mice and showed that these fell into
groups relating to different QTLs for body fat. Probably the
most important application of the genetics of gene expres-
sion will be to construct gene networks for biological traits
and identify causal interactions.

STATISTICAL ANALYSIS OF DATA 
FOR COMPLEX TRAITS

Statistical analyses, such as analyses of variance, are per-
vasive in the biological sciences. However, the multifacto-
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rial and multidimensional nature of complex traits fre-
quently makes classic statistical methods insufficient for
data analysis. In recent years, various other statistical ap-
proaches, such as principal component analysis, neural
networks, and Bayesian networks, have been used increas-
ingly to deal with large amounts of data and to analyze
complex interactions.

The use of large data sets, involving thousands of genes
and multiple traits, raises statistical issues such as false dis-
covery rates and difficulties in integrating multidimen-
sional information (42, 45). Dimension reduction tech-
niques can simplify such data sets and avoid the issue of
multiple comparisons (46, 47). One such technique is
principal component analysis (42, 48). Principal compo-
nent analysis captures orthogonal linear combinations of
correlated variables such as gene expression values, and

each combination is called a principal component (PC).
PCs are ranked based on their significance in explaining
the variance in a data set. Two- or three-dimensional plots
can be constructed with the first two or three PCs that cap-
ture most of the information in the data. The resulting vi-
sual display may elucidate how the variables are grouped
into clusters and how important each variable is in each
PC. Figure 3 shows an example of principal component
analysis in a study conducted by the Attie group (42). In
this study, the expression levels of seven genes involved in
metabolic pathways were analyzed against several pheno-
types, including glucose level, insulin level, and body
weight, in an F2-

 

ob/ob

 

 cross between C57BL/6J and BTBR.
Two PCs were identified, with the first PC encompassing
mRNA levels of SCD1, FAS, GPAT, and PEPCK and the
second encompassing mRNA levels of PPAR

 

�

 

, SREBP, and

Fig. 3. An example of the use of principal component analysis to “reduce” data in a genetic study of diabetes (42). The mRNA traits of
seven metabolic genes (SCD1, FAS, GPAT, PPAR�, SREBP, PEPCK, and ACO) as well as a normalization control for gene expression (�-actin)
were determined in a genetic cross between two strains differing in susceptibility to diabetes (see text). The trait values were then subjected
to principal component analysis, and the first two principal components are shown on a two-dimensional plot. [From Lan et al. (42), re-
printed with permission of the Genetics Society of America, copyright © 2003.]
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ACO. The first principal component, mostly driven by the
expression levels of SCD1 and FAS, was found to be
strongly associated with the insulin trait. In this case, by
performing QTL mapping for the two PCs instead of
seven individual genes, the dimensions of the analysis
were significantly reduced.

In studying complex biological traits, various data-mining
tools have gained popularity. These methods can allow effi-
cient and flexible integration of a large number of genetic
and environmental factors as well as their interactions into
the overall picture (49, 50). The essential technique of data
mining used in such applications is pattern recognition, that
is, extraction of hidden covariates of predictive value for a
complex trait from a given data set. In addition, complex
nonlinear interactions between the covariates may be de-
tected. 

 

Figure 4

 

 describes two data-mining approaches, neu-
ral network analysis and tree-based recursive partitioning,
that have proved useful in linkage and population associa-
tion studies with various traits relevant to atherosclerosis
(49–56). In addition to neural networks and tree-based
methods, other data-mining tools, such as discriminant anal-
ysis, Bayesian variable selection, combinatorial partitioning,
stepwise regression, and automated detection of informative
combined effects, have shown promise in dissecting the ge-
netics of complex traits such as myocardial infarction, hy-
pertension, and cholesterol levels (57–59).

Bayesian inference has been referred to as bringing a
“new revolution in genetics” because of its ability to incor-
porate both prior knowledge and sample data into the
networks of complex biological processes (60). Bayesian
inference is a probability model in which both data and
model parameters are considered to be random variables
with a joint probability distribution. Both prior knowledge
about an event (

 

�

 

) and sample data (x) are used to calcu-
late the posterior (or conditional) distribution of 

 

�

 

 given
data x using the equation P(

 

�

 

|x) 

 

�

 

 [P(x|

 

�

 

)P(

 

�

 

)]/P(x),
where P(

 

�

 

|x) is the probability of 

 

�

 

 given x, P(x|

 

�

 

) is the
probability of x given 

 

�

 

, P(

 

�

 

) is the probability of 

 

�

 

, and
P(x) is the probability of x. Graphical models that use
Bayes’s rule of inference, termed Bayesian networks, have
been used increasingly to model complex biological pro-
cesses such as metabolic and transcriptional regulatory path-
ways (61–64). An excellent introduction to Bayesian net-
works can be found at http://www.ai.mit.edu/~murphyk/
Bayes/bnintro.html. Bayesian networks combine proba-
bility and directed graphs to visually depict conditional
dependencies between large numbers of variables. 

 

Figure
5

 

 illustrates one possible Bayesian network for atheroscle-
rosis. The network incorporates measurements of diet, ge-
notype, obesity, diabetes, cholesterol, and atherosclerosis.
Analysis of such a network (65–67) could be used to classify
genes into functional categories. If the Bayesian network
correctly captures the causal dependencies between vari-
ables, then given enough data, genes that mediate choles-
terol’s effect on atherosclerosis (gene A in Fig. 5) could be
distinguished from those that act on atherosclerosis via obe-
sity (gene B in Fig. 5), and both could be distinguished
from those genes that act directly on atherosclerosis risk
(gene C in Fig. 5). More complex models are possible and

are the norm. Bayesian networks allow the integration of
data from multiple studies, enable ready incorporation of
medical and biochemical background knowledge, and can
assess the consistency of observational and experimental
data with different functional roles for genes.

BIOLOGICAL NETWORKS

Genetic pathways were originally modeled after the en-
zymatic steps of intermediary metabolism. The inade-
quacy of such linear models was first revealed in attempts
to use saturation mutagenesis to identify all of the steps in
developmental pathways of the vulva in 

 

Caenorhabditis ele-
gans

 

 and the compound eye in 

 

Drosophila

 

. Such studies
showed that many genes were involved, some specific for
vulva or eye development, but many others, equally im-
portant, were involved in other processes as well. These
and subsequent studies have indicated that the complex
relationships among genes are best described as distrib-

Fig. 4. Schematic representation of neural networks and tree-
based partitioning. Atherosclerotic lesion size, a complex trait, is
used as the target trait in this hypothetical example. A: A neural
network is organized into input, hidden, and output layers. Each
layer consists of multiple processing units called neurons (repre-
sented by open circles). In the input layer, neurons are labeled as
G1, G2,  . . .  Gn, representing data from particular genes, loci,
markers, or environmental factors that might be involved in lesion
formation. The information received from the input layer is
weighted, summed, and compared with a threshold using an activa-
tion function in the hidden neurons (labeled as H1, H2,  . . .  Hn)
of one or more hidden layers. The results generated from the hid-
den layers (in this case, large or small lesion size of atherosclerosis)
are transferred through another activation function to the neurons
in the output layer. The strength of the connections between neu-
rons in different layers are designated as weights (labeled as W1,
W2, Wn, Wx, and Wy), which are adjusted during the training of
the network using a training data set with known inputs and out-
puts. The weights are responsible for the flexibility and adaptability
of a fitted network model. B: In tree-based modeling, a data set is
recursively divided into more homogenous subgroups based on op-
timal split variables (tree nodes) such as genetic markers or genes.
Tree nodes are represented by open circles and labeled as G1, G2,
. . . Gn. Using certain splitting rules, each variable is measured for
its potential to divide the data set into more parsimonious subsets
based on lesion size. The explanatory variables with high potentials
are added to the tree as nodes. The growth of the tree ends when
each of the subsets becomes homogeneous to a predetermined de-
gree. Based on the final tree, sets of rules can be deduced to deter-
mine which combinations of markers or genes have predictive val-
ues of large or small lesion size.
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uted networks. A network consists of “nodes” (elements
such as genes) that exhibit specific interactions, termed
“connections” (or “edges”). In a network of genes, func-
tional variations of some genes will influence a phenotype
more than those of other genes, but the effects will de-
pend heavily on the context of other alleles that are
present. This explains the common finding of very differ-
ent phenotypes of a mouse knockout when studied in
different genetic backgrounds. This does not imply that
the interactions defined by studying atherosclerosis using
knockouts in one genetic background are wrong; rather,
they are simply part of a larger picture.

An important characteristic of networks compared with
linear pathways is increased flexibility to respond to di-
verse conditions. For example, in a network the same out-
put can be produced in multiple ways. This “buffering” ca-

pacity explains in part the common finding of knockouts
with little or no apparent effects. Although “redundancy”
is frequently invoked to explain the absence of pheno-
types in knockouts, different genes cannot be completely
redundant because natural selection would not maintain
two genes for exactly the same function. The plasticity of a
response is also greatly increased by multicellularity (as is
the case with atherosclerosis). Thus, interactions between
cells that are themselves nonidentical result in exponen-
tial increases in the possible combinations (68). Although
such networks have increased buffering capacity and plas-
ticity, their extensive interactions make them sensitive to
many different perturbations. Thus, in the case of cardio-
vascular disease, large numbers of genetic and environ-
mental factors are seen to influence susceptibility. This is
strikingly observed in mouse models of atherosclerosis, in
which more than 100 different knockouts have been ob-
served to influence the development of lesions (2).

A recent review by Barabasi and Oltvai (69) highlights
the emerging properties of biological networks. Networks
can be constructed using various “nodes,” including pro-
teins, metabolites, or genes. Although networks have been
studied in most detail in yeast and bacteria, the networks
of all organisms appear to share similar global properties.
Typically, most nodes in a network have few links, al-
though some nodes have numerous links. Such networks
are termed “scale-free.” These contrast with “random net-
works,” in which all nodes have similar connectivities (

 

Fig.
6

 

). In scale-free networks, nodes with numerous links, also
referred to as hubs, play a central role in shaping the net-
work’s behavior. Scale-free networks are characterized by a
high degree of robustness. That is, if a change occurs in
nodes of the network with few connectivities, there would
likely be strong resistance against perpetuation of the
change throughout the network. Biologically, this means
that mutations or environmental factors affecting a gene
or a pathway will not result in drastic changes in the over-
all structure of the network. For example, knockout of a
gene that happens to be a node with few connections to
other genes will generally have a much smaller effect than
knockout of a hub gene. Consistent with this notion, Jeong
and colleagues (70) reported that in yeast knockouts of
genes with many connections were much more likely to be
lethal than knockouts of genes with few connections.

One example of the use of systems biology to construct
networks is the yeast 

 

GAL

 

 gene interaction network (71).

Fig. 5. A Bayesian network model of atherosclerosis can test the
consistency of gene expression data with different functional gene
roles. See text for discussion. Dashed lines represent unobservable
flow of influence, solid lines represent observable dependencies,
and lack of a direct arc between two nodes implies a conditional in-
dependence. Genes in roles A, B, and C can theoretically, given suf-
ficient data and assuming no missing arrows, be differentiated in
this Bayesian network.

Fig. 6. Network models. At left is a random network
characterized by an almost equal number of connections
between nodes. At right is a scale-free network, character-
ized by high connectivity for a few nodes and low connec-
tivity for most other nodes.
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In this study, the integration of genetics with gene expres-
sion profiling technology, along with data collected from
protein-DNA and protein-protein interaction databases,
resulted in a model of how galactose metabolism genes in-
teract with other pathways. After experimental verifica-
tion, it was determined that the assembled network was
able to predict most interactions correctly, providing a
concrete example of how systems biology could be used to
unravel the interaction between biological pathways. Re-
cently, several other genome-wide interaction networks
have been assembled in various organisms ranging from
prokaryotes to multicellular organisms (72–75).

One striking example is the 

 

Drosophila

 

 protein interaction
network, assembled based on genome-wide yeast two-hybrid
analysis and other data (75). In this study, the authors were
able to examine local interactions and identify previously un-
recognized motifs, assign pathway membership to uncharac-
terized proteins, assign subcellular locations to proteins,
derive new links in signal transduction cascades, elucidate
intercompartmental and intracompartmental interactions,
and predict a mechanism of action for the ortholog of a
human gene associated with B-cell lymphoma. An interest-

ing observation was that after organizing the protein in-
teractions according to cellular compartments (nuclear,
cytoplasmic, membrane), the authors were able to demon-
strate that interactions within compartments were much
more frequent than those between compartments (75).

CARDIOVASCULAR NETWORKS

A network of cardiovascular physiologic traits was con-
structed by Nadeau et al. (76) through the use of simple
correlation (of traits) in a segregating set of mice. For ex-
ample, if there are interactions between traits A, B, and C,
such that B mediates entirely the interaction between A
and C, the correlation in a segregating population be-
tween A and C should be equal to the product of the cor-
relation between A and B and the correlation between B
and C [corr(A,C) 

 

�

 

 corr(A,B) 

 

�

 

 corr(B,C)]. In general,
causally linked traits will be correlated in a genetic cross,
and direct interactions will tend to be more strongly cor-
related than indirect interactions. Nadeau et al. (76) ex-
amined the relationships of several cardiovascular traits

Fig. 7. Atherosclerosis pathway interaction network. Shown is a schematic representation of interactions between 16 biological and meta-
bolic pathways (KEGG at http://www.genome.ad.jp/kegg and Biocarta at http://www.biocarta.com), each containing a minimum of three
atherosclerosis genes. The connections between the pathways illustrate the presence of common atherosclerosis genes in two pathways.
IL-10, interleukin-10; LDLR, LDL receptor; PPAR�, peroxisome proliferator-activated receptor �; Th1/Th2, T helper cell 1/2; TLR, toll-like
receptor; TNF-�, tumor necrosis factor-�.
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among one set of RI strains of mice. Mean levels of many
cardiovascular traits, from heart rate to vessel and cham-
ber dimensions, were first measured in a number of RI
strains derived from the parental strains A/J and C57BL/
6J. Pairwise Pearson’s correlations were then calculated
for all traits over all different genetic backgrounds. As a
control, the phenotypic data were simply permuted and
the results of the permutation analysis used as a baseline
value for the standard correlation coefficient. The conclu-
sions of the study were entirely consistent with physiologi-
cal studies. For example, ventricular size was related to
vessel wall thickness and diastolic dimensions, and heart
rate was found to have an inverse relationship with cardiac
dimensions. This proof-of-principle paper reveals how cor-
relation matrices with the proper threshold can unravel
causal relationships.

In a similar study, Stoll et al. (15) constructed a map of
correlated cardiovascular traits by combining physiologi-
cal profiles (correlation matrices between “likely determi-
nant phenotypes” of cardiovascular traits) and genetic
linkage analysis to unravel potential functional interac-
tions between these traits that were not apparent using
linkage analysis alone. Similarly, naturally occurring varia-
tion affecting the expression of genes in segregating pop-
ulations has the potential to establish causal relationships
among genes and could be used to construct gene-gene
and gene-phenotype interaction networks.

Another network, illustrated in 

 

Fig. 7

 

, represents a “path-
way interaction” network. This network was constructed by
identifying annotated pathways that contain three or more
genes previously implicated in atherosclerosis. In summary,
a list of 92 genes (see supplementary table) associated with
atherosclerosis was selected (2). The genes in this list either
have been shown to affect atherosclerosis through studies
in genetically altered animals (transgenic or gene-targeted
mice) or have shown evidence of association with athero-
sclerosis-related traits in multiple population studies. Pub-
licly available annotated biological and metabolic pathways
at KEGG (http://www.genome.ad.jp/kegg) and Biocarta
(http://www.biocarta.com) were then searched for the
presence of these atherosclerosis genes. Each node in Fig.
7 represents a pathway that contains a minimum of three
atherosclerosis genes. From the original 92 genes, 39
genes exist in pathways that contain a minimum of 3 ath-
erosclerosis genes. The links between the nodes represent
the co-occurrence of a gene (or genes) in two biological
pathways. As shown in Fig. 7, there are 16 pathways con-
taining 353 unique genes, several of which overlap in vari-
ous pathways. This analysis reveals numerous genes for
which no known function has previously been associated
with atherosclerosis. Thus, these genes should be consid-
ered as potential candidates, particularly if they reside at
loci identified using linkage analysis.

PROSPECTS

An improved understanding of the networks involved
in atherosclerosis will have several important benefits.

First, it will clarify interactions between various traits re-
lated to atherosclerosis (such as the components of the
metabolic syndrome) and also between atherosclerosis
and related disorders such as diabetes and osteoporosis.
Such information may have clinically relevant predictive
value. Second, it will provide new candidate genes for ge-
netic studies, independent of biochemical approaches,
thus contributing to the goal of developing genetic tests
to assess the risk of atherosclerosis and predict responses
to therapies. Third, it will help pinpoint the “weakest
links” in pathways contributing to disease; for example,
perturbations of highly connected nodes in a network are
most likely to affect the output of a pathway. Such infor-
mation should be useful in identifying targets for the de-
velopment of new therapies and in predicting potential
side effects of therapeutic interventions. Fourth, an un-
derstanding of atherosclerosis networks should help un-
ravel the interactions between genetic and environmental
factors in the disease.

The elucidation of networks for atherosclerosis will cer-
tainly require genome-wide approaches such as microar-
ray analyses. Because atherosclerosis involves many sys-
temic influences and multiple cell types, cell-based studies
will be able to reveal only a subset of the important inter-
actions. Thus, animal models, most likely the mouse, will
be central to such studies. The most promising approach
at present appears to be the combination of genetics and
expression array analyses. The multiple perturbations in
genetic crosses should allow the modeling of networks,
but the validation of such models will probably require de-
fined perturbations such as knockouts or RNAi-based ap-
proaches.
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